在本作的工作中,提出了两种基于机器学习的有限变形的本质型模型。使用输入凸神经网络,该模型是过度塑化的,各向异性的并且实现了多种凸起条件,这意味着椭圆形,因此确保了材料稳定性。第一本构模型基于一组多晶硅,各向异性和目标不变。第二种方法在变形梯度,其辅助因子和决定簇方面配制,使用组对称性来满足材料对称条件,以及数据增强以满足客观性大致。数据集的扩展为数据增强方法是基于机械考虑,不需要额外的实验或模拟数据。该模型具有高度具有挑战性的立方晶格超材料的模拟数据,包括有限变形和格子稳定性。基于在实验研究中通常应用的变形,使用适量的校准数据。虽然基于不变的模型显示了几种变形模式的缺点,但是仅基于变形梯度的模型能够非常好地再现和预测有效的材料行为,并且表现出优异的泛化能力。此外,使用分析多晶硅电位产生横向各向同性数据校准模型。在这种情况下,两种模型都表现出优异的结果,展示了PolyConvex神经网络本构模型对其他对称组的直接适用性。
translated by 谷歌翻译
Artificial intelligence (AI) in its various forms finds more and more its way into complex distributed systems. For instance, it is used locally, as part of a sensor system, on the edge for low-latency high-performance inference, or in the cloud, e.g. for data mining. Modern complex systems, such as connected vehicles, are often part of an Internet of Things (IoT). To manage complexity, architectures are described with architecture frameworks, which are composed of a number of architectural views connected through correspondence rules. Despite some attempts, the definition of a mathematical foundation for architecture frameworks that are suitable for the development of distributed AI systems still requires investigation and study. In this paper, we propose to extend the state of the art on architecture framework by providing a mathematical model for system architectures, which is scalable and supports co-evolution of different aspects for example of an AI system. Based on Design Science Research, this study starts by identifying the challenges with architectural frameworks. Then, we derive from the identified challenges four rules and we formulate them by exploiting concepts from category theory. We show how compositional thinking can provide rules for the creation and management of architectural frameworks for complex systems, for example distributed systems with AI. The aim of the paper is not to provide viewpoints or architecture models specific to AI systems, but instead to provide guidelines based on a mathematical formulation on how a consistent framework can be built up with existing, or newly created, viewpoints. To put in practice and test the approach, the identified and formulated rules are applied to derive an architectural framework for the EU Horizon 2020 project ``Very efficient deep learning in the IoT" (VEDLIoT) in the form of a case study.
translated by 谷歌翻译
Recently, Smart Video Surveillance (SVS) systems have been receiving more attention among scholars and developers as a substitute for the current passive surveillance systems. These systems are used to make the policing and monitoring systems more efficient and improve public safety. However, the nature of these systems in monitoring the public's daily activities brings different ethical challenges. There are different approaches for addressing privacy issues in implementing the SVS. In this paper, we are focusing on the role of design considering ethical and privacy challenges in SVS. Reviewing four policy protection regulations that generate an overview of best practices for privacy protection, we argue that ethical and privacy concerns could be addressed through four lenses: algorithm, system, model, and data. As an case study, we describe our proposed system and illustrate how our system can create a baseline for designing a privacy perseverance system to deliver safety to society. We used several Artificial Intelligence algorithms, such as object detection, single and multi camera re-identification, action recognition, and anomaly detection, to provide a basic functional system. We also use cloud-native services to implement a smartphone application in order to deliver the outputs to the end users.
translated by 谷歌翻译
In recent years, we have seen a significant interest in data-driven deep learning approaches for video anomaly detection, where an algorithm must determine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often do not reflect how well the model will perform in real-world scenarios. In this article, we present the Charlotte Anomaly Dataset (CHAD). CHAD is a high-resolution, multi-camera anomaly dataset in a commercial parking lot setting. In addition to frame-level anomaly labels, CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor. This is especially beneficial for skeleton-based anomaly detection, which is useful for its lower computational demand in real-world settings. CHAD is also the first anomaly dataset to contain multiple views of the same scene. With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset including person annotations, collected from continuous video streams from stationary cameras for smart video surveillance applications. To demonstrate the efficacy of CHAD for training and evaluation, we benchmark two state-of-the-art skeleton-based anomaly detection algorithms on CHAD and provide comprehensive analysis, including both quantitative results and qualitative examination.
translated by 谷歌翻译
Path prediction is an essential task for many real-world Cyber-Physical Systems (CPS) applications, from autonomous driving and traffic monitoring/management to pedestrian/worker safety. These real-world CPS applications need a robust, lightweight path prediction that can provide a universal network architecture for multiple subjects (e.g., pedestrians and vehicles) from different perspectives. However, most existing algorithms are tailor-made for a unique subject with a specific camera perspective and scenario. This article presents Pishgu, a universal lightweight network architecture, as a robust and holistic solution for path prediction. Pishgu's architecture can adapt to multiple path prediction domains with different subjects (vehicles, pedestrians), perspectives (bird's-eye, high-angle), and scenes (sidewalk, highway). Our proposed architecture captures the inter-dependencies within the subjects in each frame by taking advantage of Graph Isomorphism Networks and the attention module. We separately train and evaluate the efficacy of our architecture on three different CPS domains across multiple perspectives (vehicle bird's-eye view, pedestrian bird's-eye view, and human high-angle view). Pishgu outperforms state-of-the-art solutions in the vehicle bird's-eye view domain by 42% and 61% and pedestrian high-angle view domain by 23% and 22% in terms of ADE and FDE, respectively. Additionally, we analyze the domain-specific details for various datasets to understand their effect on path prediction and model interpretation. Finally, we report the latency and throughput for all three domains on multiple embedded platforms showcasing the robustness and adaptability of Pishgu for real-world integration into CPS applications.
translated by 谷歌翻译
新观点的合成最近通过直接从稀疏观测中学习神经辐射场进行了革命。但是,使用这种新范式渲染图像的速度很慢,因为这样的事实是,该量渲染方程的准确正交需要为每个射线提供大量样品。先前的工作主要集中于加快与每个样本点相关的网络评估,例如,通过将辐射值的缓存到显式的空间数据结构中,但这是以模型紧凑性为代价的。在本文中,我们提出了一种新颖的双网络体系结构,该架构通过学习如何最好地减少所需的样品数量来实现正交方向。为此,我们将网络分为经过共同培训的采样和阴影网络。我们的培训计划采用沿每条射线的固定样品位置,并在整个训练中逐步引入稀疏性,即使在低样本计数下也可以达到高质量。对目标数量的数量进行微调后,可以实时渲染产生的紧凑神经表示。我们的实验表明,我们的方法在质量和框架速率方面超过同时紧凑的神经表示,并且与高效的混合表示相同。代码和补充材料可从https://thomasneff.github.io/adanerf获得。
translated by 谷歌翻译
在本文中,我们在拓扑数据分析和几何深度学习之间建立了一个桥梁,调整了群体模棱两可的非企业运算符(Geneos)的拓扑理论,以在所有图表的空间上作用于在顶点或边缘加权的所有图。这是通过展示Geneo的一般概念可以用于转换图形并提供有关其结构的信息来完成的。这就需要引入广义定义和广义定义措施的新概念以及这些概念使我们能够在图之间构建基因的数学证据。实验部分结束了本文,说明了我们的操作员可能使用从图形中提取信息。本文是一系列研究线的一部分,该研究致力于为几何深度学习开发基因诺的组成和几何理论。
translated by 谷歌翻译
变形金刚目前是自然语言理解(NLU)任务的最新技术,容易产生未校准的预测或极端概率,从而根据其输出相对困难而做出不同的决策过程。在本文中,我们建议构建几个电感Venn - 持续预测因子(IVAP),这些预测因子(IVAP)可以根据预先训练的变压器的选择在最小的假设下可以很好地校准。我们在一组不同的NLU任务上测试了它们的性能,并表明它们能够产生均匀分布在[0,1]间隔的概率预测的良好概率预测,同时均保留了原始模型的预测准确性。
translated by 谷歌翻译
从文本中提取过程是过程发现的重要任务,近年来已经开发了各种方法。但是,与其他信息提取任务相反,缺乏商业流程描述的金标准库,这些文献对所有感兴趣的实体和关系仔细注释。因此,目前很难以客观的方式比较通过提取方法获得的结果,而缺乏带注释的文本也阻止了数据驱动的信息提取方法的应用,这是自然语言处理领域的典型特征。因此,为了弥合这一差距,我们介绍了PET数据集,这是用活动,网关,参与者和流程信息注释的业务流程描述的第一个语料库。我们介绍了我们的新资源,包括各种基线,以基准从文本中提取业务流程的困难和挑战。可以通过huggingface.co/datasets/patriziobellan/pet访问宠物
translated by 谷歌翻译
计算机视觉上的最新进展已经提高了使用神经网络来理解人类姿势的应用的突出性。但是,尽管在最新数据集上的准确性一直在稳步提高,但这些数据集通常无法解决现实世界应用程序中所面临的挑战。这些挑战是与远离镜头的人们,人群中的人们和被遮挡的人打交道。结果,许多现实世界的应用程序已经对没有反映部署中存在的数据的数据进行了培训,从而导致表现不佳。本文介绍了ADG-POSE,这是一种自动生成用于现实世界姿势估计的数据集的方法。可以定制这些数据集以确定人的距离,拥挤和遮挡分布。接受我们方法培训的模型能够在存在这些挑战的情况下执行,而这些挑战在其他数据集中训练的挑战失败。使用ADG置端,基于现实世界骨架的动作识别的端到端精度可在中等距离和遮挡水平的场景上增加20%,并且在其他型号的表现胜过比随机性更好的场景中增加了4倍。
translated by 谷歌翻译